

The Quantum fetch facilityPRIVATE

Paper to the European Quantime Users Group in London, November 16-17, 1995

Mark Katz, ISPC

1. INTRODUCTION

The Quantum fetch command is described in section 7.2 of the Quantum Reference Guide. It is the ability to look up information from an external file using a field, or columns, on the data record as the key to this lookup file. I doubt if there are any spec-writers who have not used the Quantum fetch facility, but few of them realise just how many applications there are in other areas of the survey processing field.

This paper is based on our experience of observing and training users in Quantum around Europe. It also refers to the more sophisticated uses of the fetch facility which allows clients to implement superior control and accuracy of changing brand-lists and their effect on data-validation and generation of Quantum axes.

2. SYNTAX AND BASIC DESCRIPTION

The fetch statement is used in the EDIT section and is called with the command

call fetch ($filename$, kcol, dcol)
where

-
filename is the external file containing the data to be looked up

-
kcol is the first column of the location of the 'key' in the c-matrix

-
dcol is the start position in the data-record, where the matched data (starting just after the key) is to be put.

Associated with the fetch statement is this lookup file, which contains a series of lines each containing the key in the first columns and then followed by the actual data. The first line of this file must contain two numbers as parameters

-
the length of the key which is assumed to start in position 1 (KL)

-
the total length of the text you wish to call in (TL)

If the data-line with that key exists in this file, the resulting values are inserted in the c-matrix starting at position dcol of length tl-kl. If it's not found, spaces are inserted.

Here is an example

Let us assume that the data file to be searched is called codes. This may contain

3 8

- key length is 3, total length is 8 (text is 5)

12345678
- 123 is the key and value is 45678

2131231A
- 213 is the key and value is 1231A

........

Then the Quantum/fetch statement will read

call fetch ($codes$, c25, c30)

This will take c(25,27) as the key, look up the file 'codes' and, if present, substitute the new text in the 5 columns c(30,34). If it's not present in the lookup file then place blanks/spaces in those columns.

3. SOME APPLICATIONS

3.1 Adding ancillary information

Let us take an example from the motor car industry. Given a 4 digit car-model code on the data record, we wish to produce a table of manufacturers - how do we obtain the manufacturer for each car-model?. One way is to include Quantum statements of the form

n01Ford;c=c(24,27).in.(1234,1236,1245:1289) etc
This is a long tedious process and prone to error.

Using the fetch facility, one can set-up an external file that has an entry for each car-make/model and against that, the code for its manufacturer. Each manufacturer will have a unique code and it is this code that is matched in the fetch file. The fetch file would use the key in columns c(24,27), look it up in the external file, bring in the associated manufacturer code and place it in, say, cols c(81,83). It is this column that is then used to define the manufacturers axis.

This file can be updated using the editor or spread-sheet program and is far easier to modify than tampering with the 'live' Quantum code.

3.2 Adding new sub-records

One often has new information to be added to the base-data - eg a new cards worth of data. One may be able to use the sort or Quantum merge facility to 'slot' each new record into its correct place in the main data-file. This only works reliably if the data-file is already sorted, or can be sorted, in the correct order. However it is not always possible to sort the data-file so the use of an external fetch file is the safest way of adding new data. In this scheme the key number will be the q're serial number

An extension of this is for trailer-card jobs where you may have a card-1 and repeating card-2's, but you wish to add on more information for the card-1. One cannot (via a sort) add a card-3 since the read mechanism of Quantum will not have the card-3 available when the first card-2 is read in!

Using the fetch file, however, one can easily read in the new data at each card-1 and these may be safely stored in c(301,380)

3.3 Specific data-recodes

fetch files may be used to recode, alter or generate new data. This may be an extension of the case in 3.1 above, or could be related to additional data for each serial number. This would be achieved with multiple statements of the type

if (c(101,104).eq.1234) c145='123'

if (c(101,104).eq.1235) c145=6

This is fraught with danger since many complex lines of code will be typed with a high chance of error. More importantly, it could result in a very large edit section which may exceed the capacity of the Quantum/C compiler - this is particularly true with dos/Quantum.

These recode statements may be replaced by a fetch file which has a line for each questionnaire id and serial in cols 1-4 followed by the new code for column 145. Note that the lookup file may also contain multi-coded data.

Using a do-loop one can put multiple changes on a single line. Here is a sample line from the lookup file

156714562014220* - where * contains '123'
In this example we wish to set c146=6; c201=4; c220'123' etc

The fetch file is much faster than checking against each of a long list of test/assignment statement each record - even if one includes a 'go to' command at the end of if test. Incidentally, this and other improvements to the code shown above is described in another paper by the author (Optimising Quantum runs, North American Quantime Users Group meeting, Chicago, April 1995) where details are given of changes to the Quantum code that can lead to dramatic improvement in run times.

3.4 New variables in a levels data-base

In a levels jobs, one often needs to compute very complex new variables at the top level that cannot easily be derived 'on the fly' using existing Quantum. One way around this is to develop a separate stand-alone Quantum program to do an initial scan of the data. This will generate these variables on a record-by-record basis and then write them out as an ascii/text file with the serial/record number as the key value. This file is then read back into the data using the fetch mechanism within the main processing Quantum run.

4. DATA-BASE OF BRANDS

Perhaps one of the most important uses of the fetch file is in connection with users who need to control and maintain a long list of brands which changes over time. This is a normally a source of much concern as spec-writers are often not told about any changes/deletions - or must work it out from informal memos/conversations!.

A technique that we often use is to encourage the users to maintain this information using a conventional data-base program, spread-sheet package or even a conventional text editor outside of Quantum . The aim is to include on each line of the data-base a significant amount of additional information eg

1234 Ford - Orion 01 4

 +- Field 4 - Number of doors

 +---- Field 3 - Manufacture code

 +------------------------ Field 2 - Name of the make/model

+---------------------------- Field 1 - Model number

Using this concept we can generate the following features or code for the Quantum system

4.1.
The Make/model axes file

Perhaps the most exciting part of this concept is that we can generate the axis definitions - automatically from the file. This is done by using fields 1 & 2 to generate statements of the form

n01Ford - Orion; c=c(xx,yy)=1234

The axis file that is generated in this way may be very large with thousands of entries, but with some subtle programming this can be split into separate axes for each manufacturer's cars.

4.2. The manufacturer axis

This is where the fetch file comes into play. A lookup file is made of fields 1 and 3, so that Quantum can quickly look up the manufacturer code for any model and then an axis is built around that matched value.

This technique can be extended to include field 4 (and other brand information) so that new axes can be formed of 'number of doors', 'size of engine' etc

4.3. Data-checking

The fetch file can be used as part of the EDIT program to check if the car-model-code on the data-record is a valid code (ie check that the fetch statement does not return blanks). It can also be used to check if the number of doors that the respondent has given is, in fact, valid for that model.

On other applications, one can include the valid price-range on this data-base and then use it to ensure that the respondent has given a plausible price for the product.

4.4. New derived variables

One often needs to combine makes into new groupings eg - 'marketing position', type of car, price range etc. This is achieved by simply adding new fields to data-base.

4.5 Lists of Brands/makes

Having this information in a separate file, makes it simple to provide specialised reports of brand lists, manufactures and can be easily checked for consistency. If the list is sorted by alphabetical order of field 2 (the name) it is of immense value to the coders. The entire file could be incorporated into an on-line data-entry system and the data-bases used for computer assisted coding. In this mode, multiple/alternative spellings of the title/names of the brands can be included in the lists (eg for drug names in a pharmaceutical study)

4.6 Preparing for Quanvert multi-flip

Given a multi-country study, one often needs to introduce cross-country brands - especially where the same brand has different names/codes across countries. Using the above technique, one can introduce a new field which is its Euro-brand classification and then have it matched with the fetch facility to be included in the cross-country brand axes.

The software to carry out the above tasks can be set-up with simple programs using the awk or perl languages - one may even use the Quantum EDIT.

The main advantage of this approach is that any changes are handled centrally by someone dedicated to the tasks of maintaining the brand-code-lists without introducing any changes within the Quantum programs.

5. PROBLEM AREAS

a.
The lookup file must be sorted in ascending order. (Put a space on the key length record and use sort -u under unix)
b.
There must not be entries with duplicate keys. (This is a pity and perhaps in a future version of Quantum it will deal more intelligently with these situations)

c.
If the file doesn't exist or has errors, you will not know until the data-pass starts.

d.
One may forget to put the 'c' in front of the parameters eg

call fetch ($lookup$, 24, 181)

The compiler will not complain until Quantum crashes rather spectacularly

e.
There is an (often reached) limit to the number of fetch files that may be used. There is a 'get around' to join all the lookup files into one and to include a code on each line to denote which of the fetch files it belongs too.

f.
There is a finite limit to the size of a fetch file. If one approaches this limit, it is best to use a Quantum list command on the raw data to ensure that the lookup file does not contain records that will not be called from the main Quantum data-pass. Alternatively one can split the lookup file into two parts.

6. ON THE HORIZON

One of the problems with the fetch facility is that it operates silently and one does not know how 'successfully' it was able to deal with all the inquiries to the lookup file.

It seems likely that in a future release of Quantum, more 'admin' information is to be given about fetch files on the out2/sum_ files. It will list out all the fetch files, the number of entries and how many un/successful matches took place. More importantly, the user will be able to ask Quantum to list out all the entries in the fetch file showing if that key-value was actually invoked during the data-pass. This will help give early warning about any possible errors/omissions in this file.

IN SUMMARY

The fetch facility has many uses in both conventional Quantum tabulation programs and as a supplement to an integrated code-list data-base system. If used properly and fully it can greatly improve

-
the reliability of the Quantum code you produce

-
the efficiency of the runs

-
the quality of the data

This is just one of the excellent features of the Quantum program that can help you achieve better efficiency. A fuller range is covered in our company's advanced Quantum work-shops and specialised consultancy assignments for Quantum/vert users. For further information about this topic, contact the author on +44 181 455 4665, fax +44 181 458 9554 or email to mark@ispc001.demon.co.uk.

Quantum/Fetch files
EQUG, Nov 1995
Mark Katz, ISPC

